Silicon micromachining to tissue engineer branched vascular channels for liver fabrication.

نویسندگان

  • S Kaihara
  • J Borenstein
  • R Koka
  • S Lalan
  • E R Ochoa
  • M Ravens
  • H Pien
  • B Cunningham
  • J P Vacanti
چکیده

To date, many approaches to engineering new tissue have emerged and they have all relied on vascularization from the host to provide permanent engraftment and mass transfer of oxygen and nutrients. Although this approach has been useful in many tissues, it has not been as successful in thick, complex tissues, particularly those comprising the large vital organs such as the liver, kidney, and heart. In this study, we report preliminary results using micromachining technologies on silicon and Pyrex surfaces to generate complete vascular systems that may be integrated with engineered tissue before implantation. Using standard photolithography techniques, trench patterns reminiscent of branched architecture of vascular and capillary networks were etched onto silicon and Pyrex surfaces to serve as templates. Hepatocytes and endothelial cells were cultured and subsequently lifted as single-cell monolayers from these two-dimensional molds. Both cell types were viable and proliferative on these surfaces. In addition, hepatocytes maintained albumin production. The lifted monolayers were then folded into compact three-dimensional tissues. Thus, with the use microfabrication technology in tissue engineering, it now seems feasible to consider lifting endothelial cells as branched vascular networks from two-dimensional templates that may ultimately be combined with layers of parenchymal tissue, such as hepatocytes, to form three-dimensional conformations of living vascularized tissue for implantation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Surface Micromachining Technologies for Microfluidics and BioMEMS

In the last decade, examples of devices manufactured with SUMMiT technology have demonstrated the capabilities of polysilicon surface micromachining [1]. Currently we are working on enhancements to this technology that utilize additional structural layers of silicon nitride to enable Microfluidics and BioMEMS applications. The addition of the silicon nitride layers allows the fabrication of mic...

متن کامل

Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator

This paper presents a fabrication process that integrates polysilicon surface micromachining and deep reactive ion etching (DRIE) bulk silicon micromachining. The process takes advantage of the design flexibility of polysilicon surface micromachining and the deep silicon structures possible with DRIE. As a demonstration, a torsional actuator driven by a combdrive moving in the out-of-plane dire...

متن کامل

Surface Micromachining for Microelectromechanical Systems

Surface micromachining is characterized by the fabrication of micromechanical structures from deposited thin films. Originally employed for integrated circuits, films composed of materials such as low-pressure chemical-vapor-deposition polycrystalline silicon, silicon nitride, and silicon dioxides can be sequentially deposited and selectively removed to build or “machine” three-dimensional stru...

متن کامل

Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.

This paper presents a novel channel fabrication technology of bulk-micromachined monolithic embedded polymer channels in silicon substrate. The fabrication process favorably obviates the need for sacrificial materials in surface-micromachined channels and wafer-bonding in conventional bulk-micromachined channels. Single-layer-deposited parylene C (poly-para-xylylene C) is selected as a structur...

متن کامل

Photolithographic surface micromachining of polydimethylsiloxane (PDMS).

A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2000